Lineage Differentiation Program of Invariant Natural Killer T Cells
نویسندگان
چکیده
Invariant natural killer T (iNKT) cells are innate T cells restricted by CD1d molecules. They are positively selected in the thymic cortex and migrate to the medullary area, in which they differentiate into 3 different lineages. Promyelocytic leukemia zinc finger (PLZF) modulates this process, and PLZFhigh, PLZFintermediate, and PLZFlow iNKT cells are designated as NKT2, NKT17, and NKT1 cells, respectively. Analogous to conventional helper CD4 T cells, each subset expresses distinct combinations of transcription factors and produces different cytokines. In lymphoid organs, iNKT subsets have unique localizations, which determine their cytokine responses upon antigenic challenge. The lineage differentiation programs of iNKT cells are differentially regulated in various mice strains in a cell-intrinsic manner, and BALB/c mice contain a high frequency of NKT2 cells. In the thymic medulla, steady state IL-4 from NKT2 cells directly conditions CD8 T cells to become memory-like cells expressing Eomesodermin, which function as premade memory effectors. The genetic signature of iNKT cells is more similar to that of γδ T cells and innate lymphoid cells (ILCs) than of conventional helper T cells, suggesting that ILCs and innate T cells share common developmental programs.
منابع مشابه
Comparison of Two Flow Cytometric Methods for Detection of Human Invariant Natural Killer T Cells (iNKT)
Background: Invariant natural killer cells (iNKT) are an important immunoregulatory T cell subset. Currently several flow cytometry-based approaches exist for the identifi-cation of iNKT cells, which rely on using the 6B11 monoclonal antibody or a combina-tion of anti-Vα24 and anti-Vβ11 antibodies. Objective: The aim of this study was to compare the ability of two flow cytometry-based methods f...
متن کاملId Proteins Suppress E2A-Driven Invariant Natural Killer T Cell Development prior to TCR Selection
A family of transcription factors known as E proteins, and their antagonists, Id proteins, regulate T cell differentiation at critical developmental checkpoints. Id proteins promote the differentiation of conventional αβ T cells and suppress the expansion of innate-like αβ T cells known as invariant natural killer T (iNKT) cells. However, it remains to be determined whether Id proteins differen...
متن کاملiNKT cell development is orchestrated by different branches of TGF-β signaling
Invariant natural killer T (iNKT) cells constitute a distinct subset of T lymphocytes exhibiting important immune-regulatory functions. Although various steps of their differentiation have been well characterized, the factors controlling their development remain poorly documented. Here, we show that TGF-beta controls the differentiation program of iNKT cells. We demonstrate that TGF-beta signal...
متن کاملRegulated Expression of miR-155 is Required for iNKT Cell Development
Invariant natural killer T cells (iNKT cells) are CD1d-restricted, lipid antigen-reactive T lymphocytes with immunoregulatory functions. iNKT cell development in the thymus proceeds through subsequent stages, defined by the expression of CD44 and NK1.1, and is dictated by a unique gene expression program, including microRNAs. Here, we investigated whether miR-155, a microRNA involved in differe...
متن کاملThe transcriptional repressor NKAP is required for the development of iNKT cells
Invariant natural killer T cells have a distinct developmental pathway from conventional αβ T cells. Here we demonstrate that the transcriptional repressor NKAP is required for invariant natural killer T cell but not conventional T cell development. In CD4-cre NKAP conditional knockout mice, invariant natural killer T cell development is blocked at the double-positive stage. This cell-intrinsic...
متن کامل